LULESH

Summary Version
2.0

Purpose of Benchmark

LULESH is a shock hydro mini-app. While designed to test many machine and
hardware features in particular it stresses compiler vectorization, OpenMP
overheads and on node parallelism.

Characteristics of Benchmark

LULESH performs a hydrodynamics stencil calculation using both MPI and OpenMP
to achieve parallelism. In general the compute performance properties of LULESH
are more interesting than messaging as on a typical modern machine only about
10% of the runtime is spent in communication. Also, LULESH has been shown to
scale with less than 10% performance degradation from 4 nodes to the entire
Sequoia (BlueGene/Q) system.

Mechanics of Building Benchmark

LULESH can be built with any combination of OpenMP and MPI from a single source
using the provided Makefile. To turn on MPI use an MPI compiler and the
—-DUSE_MPI flag. To turn on OpenMP use the appropriate flag for your compiler, for
example —fopenmp for g++.

To build with your compiler and flags of choice edit the MPICXX or SERCXX values
appropriately along with the CXXFLAGS and LDFLAGS. Then type make and you
should get a built executable named 1ulesh?2. 0.

For a benchmarking, it is not necessary to include silo or hdf5 as these are only
needed for data visualization and parallel I/0 testing - neither of which are
exercised in the default FOM.

Mechanics of Running Benchmark

There is one restriction in running LULESH. The number of domains, which is equal
to the number of MPI tasks, must always be the cube of an integer.

We also suggest using about 25,000 to 30,000 elements per GB of memory. The
number of MPI tasks and the -s <size>command line parameters control the



problem size for a single MPI task, or domain. The total aggregate number of
elements can be computed by MPI tasks * <size>3.

Other than the —s command line, there are other two options you may find useful
during testing. These are the —i option to limit the number of iterations, which can
be particularly helpful in reducing runtime when testing large problems and/or
using simulators or emulators. And the —p option which prints out regular
timestepping progress to stdout.

Example command line inputs for:
1. Small problem:

a. Forasingle CPUrun: ./lulesh2.0

b. For a single node with 16 cores and 16 GB of memory an example run
would be: mpirun <with 8 tasks> ./lulesh2.0 -s 38

2. Medium problem: (<1K node) job

a. Fora512 node system with 16 cores per node and 32 GB of memory
per node an example run would be: mpirun <4096 tasks>
./lulesh2.0 -s 48

3. Large Sequoia problem:

a. Throughput: The job to get the figure of merit was run as follows:

mpirun <32768 tasks> ./lulesh2.0 -s 38
4. CORAL class problem:

a. There are multiple ways to meet the CORAL throughput requirement
for weak scaling by adjusting the benchmark job below are a few
examples:

i. mpirun <32768 tasks> ./lulesh2.0 -s 48
ii. mpirun <64000 tasks> ./lulesh2.0 -s 38
iii. mpirun <125000 tasks> ./lulesh2.0 -s 31

Verification of Results

The FOM is output as the last line of the simulation. This is the number that should
be reported.

To verify the benchmark results are correct various values are output at the end.
For a problem with the same configuration the final origin energies should be the
same to the number of digits printed. Also, the iteration count should be the same.
Finally the symmetry values for the final origin energy should all be less than 10-8
for small problem sizes <size> * (MPIRanks)1/3 < 100.



